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Abstract

The response of the guideway induced by moving maglev vehicle is investigated in this paper. The maglev vehicle is

simplified as evenly distributed force acting on the guideway at constant speed. According to the experimental line, the

guideway structure of rail–sleeper–bridge is simplified as Bernoulli–Euler (B–E) beam—evenly distributed spring—simply

supported B–E beam structure; thus, double deck model of the maglev guideway is constructed which can more accurately

reflect the dynamic characteristic of the experimental line. The natural frequency and mode are deduced based on the

theoretical model. The relationship between structural parameters and natural frequency are exploited by employing the

numerical calculation method. The way to suppress the vehicle–guideway interaction by regulating the structural

parameter is also discussed here. Using the normal coordinate transformation method, the coupled differential equations

of motion of the maglev guideway are converted into a set of uncoupled equations. The closed-form solutions for the

response of the guideway subjecting the moving load are derived. It is noted that the moving load would not induce

the vehicle–guideway interaction oscillation. The analysis of the guideway impact factor implies that at some position of

the guideway, the deflection may decrease with the increase of the speed of the load; several extreme value of the guideway

displacement will appear induced by different speeds, with different acting place, the speeds are different either. The final

numerical simulation verifies these conclusions.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Maglev vehicle is one of the important transportation equipment of the urban track traffic system toward
the future because of its safety and environmental friendly. But vehicle–guideway interaction problem bothers
the investigators and engineers of the maglev system for years. No well-accepted interpretation has been
reported yet. The solution of it is significant for reducing system cost and improving the running quality and
can greatly accelerate the commercialization process of the maglev traffic system. The investigation of the
guideway is the basement of this problem. Now most study simplifies the guideway to simply supported B–E
beam, for example, Cai et al. [1–3], Zhao et al. [4] and Zheng et al. [5,6]. This railroad model can only solve
one-dimension vibration of the elastic beam. It cannot accurately reflect the dynamic characteristic of the
guideway system, which has much limitation in researching the vehicle–guideway interaction problem. Few
results about the maglev track model considering the structure of rail–sleeper–bridge have been reported in
present literature. It is our main concern in this article.
ee front matter r 2007 Elsevier Ltd. All rights reserved.

v.2007.04.030

ing author. Fax: +860731 4516000.

ess: nudtwhp@yahoo.com.cn (H.P. Wang).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.04.030
mailto:nudtwhp@yahoo.com.cn


ARTICLE IN PRESS
H.P. Wang et al. / Journal of Sound and Vibration 305 (2007) 621–640622
Different from maglev traffic system, fruitful results have been achieved about the vehicle–bridge
interaction with the fast development of the high-speed railway system. Yang et al. [7,8] simplifies the bridge as
simply supported beam and studies the vehicle–bridge interaction problem based on the model of it. If the
elasticity of the support is considered, resonances of much higher peaks can be excited by moving trains at
much lower speeds than those on simply supported beams. In general, it is confirmed that accurate solutions
can be obtained by considering only the first mode, which can greatly simplify the analysis process. Yau et al.’s
research about vertical acceleration of simply supported beam shows that if the train runs at the resonant
speed, the maximum impact acceleration may appear at the second or higher mode of the beam [9,10]. To find
the influence of sleepers and ballast to the moving train, Baeza et al. [11] builds the railway model considering
the contact of wheel–track, sleeper and ballast. Modal substructure approach is employed to study
wheel–track interaction phenomenon. Biondi et al. [12] simplifies the sleeper and ballast as parallel spring-
damping structure. Numerical method is applied to analyze the dynamics of train–track–bridge system.
Shamalta et al. [13] analytically study the dynamic response of an embedded railway track to a moving load.
Two-dimensional railway model is constructed and he uses Fourier integral transform to obtain the closed-
form solution of the system. The book by Yang et al. [14] offers a comprehensive study on the mechanisms of
resonance for train-induced vibrations on high-speed railway bridge [9].

Modeling the method of investigating the vehicle–track resonant problem of the wheel–track system, this
paper makes middle-low speed maglev test line as researching object. The response of the maglev guideway
induced by moving maglev vehicle is its main consideration. The deformation conditions of the guideway
system are also investigated here. The sleeper is simplified as evenly distributed spring, two rails are merged
into one free ends B–E beam, and the bridge is treated as simply supported B–E beam. Then the double deck
model with the component of free-end beam, evenly distributed spring and simply supported beam is deduced,
which can more accurately reflect the experimental guideway. Different from the point contact of the
wheel–track system, the force of the maglev vehicle acting on the rail is distributed. In this article, the maglev
vehicle is simplified as evenly distributed force with constant speed. Mode analyzing method is introduced to
convert the continuous system equations into a set of multiple degrees of freedom coupling differential
equations. Then mode superposition method is employed to decouple the coupling equations so that one order
approximate closed-form solution of the guideway can be obtained. Finally, we use Wilson-y numerical
integral method to verify the analyzing results.

2. Constructing the model of the guideway

This section builds the theoretical model of the maglev guideway. According to the simplified condition
proposed previously, sketch map of the maglev guideway is given in Fig. 1. Bridge and rail are connected by
evenly distributed spring, the stiffness of per unit length is ksle. zr and zb are, respectively, rail and bridge
vertical displacement. The length of the bridge and rail is Lb. The bridge is simply support while the rail is free.
The evenly distributed force represents the maglev vehicle moving at speed v, whose density of per unit length
is fm and the length is Lv.
f (x,t)
Lv

ksle

Lb

Zr

Zb

bridge

Z

v

x

rail

Fig. 1. Structure of the guideway.
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Based on the above assumptions, the motion equations to describe deformation of the bridge and rail are

EbIb

q4zbðx; tÞ

qx4
þ cb

qzbðx; tÞ

qt
þ rb

q2zbðx; tÞ

qt2
¼ ksleðzrðx; tÞ � zbðx; tÞÞ, (1)

ErIr

q4zrðx; tÞ

qx4
þ cr

qzrðx; tÞ

qt
þ rr

q2zrðx; tÞ

qt2
¼ f ðx; tÞ � ksleðzrðx; tÞ � zbðx; tÞÞ, (2)

where Eb and Er are elastic modulus, Ib and Ir are moment of inertia, cb and cr are damping coefficient, rb and
rr are the mass per unit length of the bridge and rail. According to the position on the rail, moving load f(x,t)
is written to be [16]

f ðx; tÞ ¼ f m

1�Hðx� vtÞ ðrunning on to the bridgeÞ;

Hðx� vtþ LvÞ �Hðx� vtÞ ðrunning on the bridgeÞ;

Hðx� vtþ LvÞ ðrunning out of the bridgeÞ;

8><
>: (3)

where H(t) is the unit step function, it describes a unit evenly distributed load. The effective length and
position of it is determined by running speed v and time t.

To get analytical solutions of the above partial differential equations, we need to simplify the high-order
partial differential equations into a set of ordinary differential equation. After that, normal coordinate can be
applied to estimate the vertical displacement of the rail and bridge.

3. Vibration analysis

To simplify the high-order partial differential equations, we use mode analyzing method. The displacement
of the bridge zb(x,t) can be approximately expressed as

zbðx; tÞ ¼
X
n¼1

fb;nðxÞqb;nðtÞ, (4)

where fb,n(x) is the nth shape of the bridge at position x, qb,n(t) denotes the generalized coordinates associated
with the nth shape fb,n(x). Because the bridge is simply supported, the boundary conditions of it are

EbIbf
00

b;nð0; tÞ ¼ EbIbf
00

b;nðLb; tÞ ¼ 0; fb;nð0; tÞ ¼ fb;nðLb; tÞ ¼ 0; zbðx; 0Þ ¼ _zbðx; 0Þ ¼ 0. (5)

According to this boundary condition (4) can be rewritten as

zbðx; tÞ ¼
X
n¼1

fb;nðxÞqb;nðtÞ ¼
X
n¼1

sin
npx

Lb

� �
qb;nðtÞ. (6)

Similarly, the displacement of the rail is determined by

zrðx; tÞ ¼
X
n¼1

fr;nðxÞqr;nðtÞ, (7)

where fr,n(x) is the nth shape of the bridge at position x, qr,n(t) denotes the generalized coordinates associated
with the nth shape fr,n(x). Because the two ends of the rail are free, the boundary conditions of it are

f00r;nð0Þ ¼ f00r;nðLbÞ ¼ 0; f000r;nð0Þ ¼ f000r;nðLbÞ ¼ 0; zrðx; 0Þ ¼ _zrðx; 0Þ ¼ 0. (8)

According to Refs. [17,18], the specific shape of the rail is

fr;nðxÞ ¼ cosh lnxþ cos lnx� Vn sinh lnxþ sin lnxð Þ; n ¼ 1; 2; 3; . . . . (9)

where

V n ¼
sinh lnLb þ sin lnLb

cosh lnLb þ cos lnLb

; lnLb ffi nþ
1

2

� �
p.

By substituting the displacement functions (6) and (9) into (1) and (2), then multiplying both sides of the
equations with respect to the variation of the assumed shape functions, integrating the equations over the
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beam length Lb, and finally considering the mode orthogonal condition, we can derive the following
simultaneous differential equations of motion in terms of the generalized coordinates (qb,n, qr,n) as

B0 €qb;n þ B1 _qb;n þ B2;nqb;n � B3;nqr;n ¼
X

k¼1;kan

B4;kqr;k, (10)

C0;n €qr;n þ C1;n _qr;n þ C2;nqr;n � B3;nqb;n ¼
X

k¼1;kan

C4;kqb;k þ C5;n, (11)

where

B0 ¼
rbLb

2
; C0;n ¼ rrD̄n; B1 ¼

crLb

2
; C1;n ¼ crD̄n; B2;n ¼

EbIbn4p4 þ ksleL
4
b

2L3
b

,

B3;n ¼ �2ksleLbn
2þ 2V n

p 4nþ 1ð Þ
þ 4ksleLbn

1� cosh p nþ 0:5ð Þð Þ cos npð Þ þ V n sinh p nþ 0:5ð Þð Þ cos npð Þ
p 8n2 þ 4nþ 1ð Þ

,

B4;k ¼ 4ksleLbn
1þ V k cos ðnpÞ cos ðkpÞ

p 4n2 � 4k2
� 4k � 1

� � þ 1� cosh ðkpþ 0:5pÞ cos ðnpÞ þ Vk sinh ðkpþ 0:5pÞ cos ðnpÞ

p 4n2 þ 4k2
þ 4k þ 1

� �
 !

,

C2;n ¼
ErIrp4

16L4
b

ð2nþ 1Þ4 þ ksle

 !
D̄n,

C4;k ¼ 4ksleLbk
1þ V n cos kpð Þ cos npð Þ

p 4k2
� 4n2 � 4n� 1

� � þ 1� cosh ðnpþ 0:5pÞ cos ðkpÞ þ Vn sinh ðnpþ 0:5pÞ cos ðkpÞ

p 4k2
þ 4n2 þ 4nþ 1

� �
 !

,

D̄n ¼
2Lb

ð2nþ 1Þp
cos ðnpÞ cosh

2nþ 1

2
p

� �
þ V2

n cosðnpÞ cosh
2nþ 1

2
p

� �
� 4V n cos ðnpÞ sinh

2nþ 1

2
p

� �� �

þ
�VnLb

ð2nþ 1Þp
þ Lb þ

Lb

ð2nþ 1Þp
sinh ð2nþ 1Þp� 2V n cosh ð2nþ 1Þpþ V2

n sinh ð2nþ 1Þp
� �

.

Considering different acting position of the load on the bridge, C5,n can be expressed as [16]:
(1)
 The load is running on to the bridge:

C5u;n ¼

Z vt

0

f ðx; tÞfr;nðxÞdx

¼
f m

ln

sinh ðvlntÞ þ sin ðvlntÞ � V nðcosh ðvlntÞ � cos ðvlntÞÞð Þ. ð12aÞ
(2)
 The load is running on the bridge:

C5a;n ¼

Z vt

vt�Lv

f ðx; tÞfr;nðxÞdx

¼
f m

ln

ðsinh ðvlntÞ þ sin ðvlntÞ � V n cosh ðvlntÞ þ V n cos ðvlntÞ � sinh ððvt� LvÞlnÞ

� sin ððvt� LvÞlnÞ þ V n cosh ððvt� LvÞlnÞ þ V n cos ððvt� LvÞlnÞÞ. ð12bÞ
(3)
 The load is running out of the bridge:

C5o;n ¼

Z Lb

vt�Lv

f ðx; tÞfr;nðxÞdx

¼
f m

ln

ð� sinh ððvt� LvÞlnÞ � sin ððvt� LvÞlnÞ þ Vn cosh ððvt� LvÞlnÞ � Vn cos ððvt� LvÞlnÞþ

sinh ðlnLbÞ þ sin ðlnLbÞ � V n cosh ðlnLbÞ þ V n cos ðlnLbÞÞ, ð12cÞ
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where

ln ¼
ð2nþ 1Þp

2Lb

.

Writing (10) and (11) into matrix form, we have the generalized coordinate equation of the guideway system
about the time

B0 0

0 C0;n

" #
€qb;n

€qr;n

" #
þ

B1 0

0 C1;n

" #
_qb;n

_qr;n

" #
þ

B2;n �B3;n

�B3;n C2;n

" #
qb;n

qr;n

" #

¼

P
k¼1;kanB4;kqr;kP
k¼1;kanC4;kqb;k

" #
þ

0

C5;n

" #
. ð13Þ
3.1. Free vibration analysis of the maglev guideway

To capture the dynamic characteristics of a vibrating system, free vibration analysis is one convenient way.
By letting B4,k ¼ C4,k ¼ 0, cb ¼ cr ¼ 0, f ¼ 0 in Eq. (13), the generalized equations for the maglev guideway is
reduced to the following for free vibration:

B0 0

0 C0;n

" #
€qb;n

€qr;n

" #
þ

B2;n �B3;n

�B3;n C2;n

" #
qb;n

qr;n

" #
¼

0

0

� �
. (14)

Consider only the first n coupled equations in Eq. (14). By assuming the vibration to be of the harmonic
type, the solution of (14) can be shown as

qb;nðtÞ

qr;nðtÞ

" #
¼

jb;n

jr;n

" #
sin ðOntþ ynÞ, (15)

where jb,n and jr,n are vibration amplitude of the bridge and rail, On is the natural frequency, yn is the
vibration phase. Referring to the initial condition given in Eqs. (5) and (8), it is easy to note that yn ¼ 0. If (15)
stands, next condition must be satisfied:

B2;n � B0O2 �B3;n

�B3;n C2;n � C0;nO2

" #
jb;n

jr;n

" #
¼ 0. (16)

If (16) has non-zero solution, then

B2;n � B0O2 �B3;n

�B3;n C2;n � C0;nO2

�����
����� ¼ 0. (17)

Expanding it yields

O2
n

� �2
B0C0;n � O2

n B0C2;n þ B2;nC0;n

� �
� B2

3;n þ B2;nC2;n ¼ 0. (18)

Eq. (18) is quadratic equation about O2
n; from it, a couple of root can be obtained as

O2
n;1;2 ¼

1

2B0C0;n
B̄n � C̄n

� �
, (19)

where B̄n ¼ B2;nC0;n þ B0C2;n; C̄n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
2;nC2

0;n � 2B2;nC0;nB0C2;n þ B2
0C

2
2;n þ 4B0C0;nB2

3;n

q
: If n equals to a

known integer, according to the expression of (19), (18) has a pair of positive roots, which means that
the guideway system may exhibit two types of synchronization free oscillation with different frequency On,1

or On,2. We name the smaller one the first natural frequency and the bigger one the second natural frequency
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of the nth mode. Corresponding vibration are called the first natural vibration and the second natural
vibration.

Substituting O2
n;1 and O2

n;2 into (16), two real vectors un1and un2 can be determined as

un1 ¼
jb;n11

jr;n11

" #
; un2 ¼

jb;n12

jr;n12

" #
, (20)

jb,n11 and jr,n11, elements of un1, satisfy

B2;n �
1

2C0;n
B̄n � C̄n

� �� �
jb;n11 � B3;njr;n11 ¼ 0;

�B3;njb;n11 þ C2;n �
1

2B0
B̄n � C̄n

� �� �
jr;n11 ¼ 0:

8>>><
>>>:

(21)

Because O2
n;1 is the root of (16) where the determinant of its coefficient matrix equals to zero, (16) has infinite

number of non-zero roots. So jb,n11 and jr,n11 cannot be specifically determined. Only the amplitude
proportion of the first natural vibration of the guideway system can be obtained:

cn1 ¼
jr;n11

jb;n11

¼
2B2;nC0;n � B̄n � C̄n

� �
2B3;nC0;n

¼
2B0B3;n

2B0C2;n � B̄n � C̄n

� � . (22)

Following the same procedure, amplitude proportion of the second natural vibration is

cn2 ¼
jr;n12

jb;n12

¼
2B2;nC0;n � B̄n þ C̄n

� �
2B3;nC0;n

¼
2B0B3;n

2B0C2;n � B̄n þ C̄n

� � . (23)

Vectors

un1 ¼ jb;n11

1

cn1

" #
and un2 ¼ jb;n12

1

cn2

" #

reflect the character of the guideway system when it vibrates at natural frequency and so is called vibration
mode of the first and second natural vibration.

Natural vibration mode unr r ¼ 1,2 gives the proportion relation of the rail and bridge. When the guideway
vibrates at the rth natural frequency, it means that the natural vibration is always the intermittent vibration
with the same frequency, but the vibration may be in-phase (cnro0) or anti-phase (cnro0). For any
7natural vibration mode jnr and non-zero real constant a, aunr is still the natural vibration mode
corresponding to On,r [17].

To decouple the coupling equations, normal coordinate transformation is employed so that generalized
coordinate [qb qr]

T can be expressed by normal coordinate Q ¼ [Qb Qr]
Tas

q ¼
qb;n

qr;n

" #
¼

1 1

cn1 cn2

" #
Qb;n

Qr;n

" #
¼ WnQ, (24)

where Wn is the transformation matrix from q to Q.
Notes: the above analysis assumes that there is no coupling among different vibration mode of the

guideway, only the coupling between the same vibration mode is discussed. If letting cb ¼ cr ¼ 0, f ¼ 0, (13)
becomes

B0 0

0 C0;n

" #
€qb;n

€qr;n

" #
þ

B2;n �B3;n

�B3;n C2;n

" #
qb;n

qr;n

" #
¼

P
k¼1;kanB4;kqr;kP
k¼1;kanC4;kqr;k

" #
. (25)

If nX2, coupling exist among different modes. And low modes influence the high modes. Assuming mode
method can be used to get the first mode closed-form solutions. Then higher mode closed-form solutions can
always be obtained by solving the lower ones. It includes the low order exciting part. To get the pure high-
order mode closed-form solutions, we set B4,k ¼ C4,k ¼ 0.
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3.2. Midpoint displacement response of the maglev guideway

In general, for a simply supported beam subjected to moving load, the maximum deflection response will be
excited at the mid-span [10,15]. Therefore, the first set of displacement shapes can be used to compute the
midpoint deflection response of the guideway under the moving load. In other words, (13) is reduced to

B0 0

0 C0;1

" #
€qb;1

€qr;1

" #
þ

B1 0

0 C1;1

" #
_qb;1

_qr;1

" #
þ

B2;1 �B3;1

�B3;1 C2;1

" #
qb;1

qr;1

" #
¼

0

C5;1

" #
. (26)

Observing the coefficient of (26), we know that

B1

B0
¼

cb

rb

;
C1

C0
¼

cr

rr

. (27)

Because the structure damping of the rail and bridge is small, we assume

a0 ¼
cb

rb

�
cr

rr

. (28)

Then the damping of (26) is called mass damping, substituting it into (26) yields

B0 0

0 C0;1

" #
€qb;1

€qr;1

" #
þ a0

B0 0

0 C0;1

" #
_qb;1

_qr;1

" #
þ

B2;1 �B3;1

�B3;1 C2;1

" #
qb;1

qr;1

" #
¼

0

C5;1

" #
. (29)

Eq. (29) shows that the rail and bridge couple each other because of the distributed spring, to deduce their
closed-form solutions, normal coordinate transformation method is employed to convert the coupling
equations into a set of uncoupling equations. Substituting (25) into (29) and multiplying both side with WT

1 , if
orthogonal condition of the natural modal is considered, (29) becomes

mb 0

0 mr

" #
€Qb

€Qr

" #
þ

cb 0

0 cr

" #
_Qb

_Qr

" #
þ

kb 0

0 kr

" #
Qb

Qr

" #
¼

c11

c12

" #
C5;1, (30)

where mb ¼ B0 þ c2
11C0;1, mr ¼ B0 þ c2

12C0;1, cb ¼ a0 B0 þ c2
11C0;1

� �
, cr ¼ a0 B0 þ c2

12C0;1

� �
,

kb ¼ B2;1 � 2B3;1c11 þ C2;1c
2
11, kr ¼ B2;1 � 2B3;1c12 þ C2;1c

2
12. Initial conditions of the generalized coordinate

are known as

qb

qr

" #
¼

0

0

� �
;

_qb

_qr

" #
¼

0

0

� �
. (31)

Substituting it into (25), the initial conditions of the normal coordinate is

Qb

Qr

" #
¼

0

0

� �
;

_Qb

_Qr

" #
¼

0

0

� �
. (32)

As is shown in Eq. (12), when the position of the distributed moving load is different, the expression of C5,1

is different either. Then the solutions of (30) must be respectively considered according to the position of the
moving load. Laplace transformation is applied to get the solutions of (30):
(1)
 The load is running on to the bridge: Eq. (32) has shown the initial condition of (30), transform both side
of (30) into Laplace domain yields

Qub sð Þ mbs2 þ cbsþ kb

� �
¼

f mc11

l1

o1 � V 1s

s2 � o2
1

þ
V1s� o1

s2 þ o2
1

� �
, (33a)

Qur sð Þ mrs
2 þ crsþ kr

� �
¼

f mc12

l1

o1 � V1s

s2 � o2
1

þ
V 1s� o1

s2 þ o2
1

� �
, (33b)
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where o1 ¼ vl1, it is the excitation frequency of the moving load. Then Qub(s) and Qur(s) can be written as
the sum of rational fraction

Qub sð Þ ¼
f mc11

l1

mbpub1pub4 þmbpub0pub5

� �
sþ pub2pub4 þ pub0pub6

pub0pub4 mbs2 þ cbsþ kbð Þ

 

�
pub1sþ pub3

pub0 s2 � o2
1

� �þ �pub5sþ pub7

pub4 s2 þ o2
1

� �
!
, ð34aÞ

Qur sð Þ ¼
f mc12

l1

mrpur1pur4 þmrpur5pur0

� �
sþ pur2pur4 þ pur0pur6
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where pub0–pub7 and pur0–pur7 are given in the appendix. Applying Laplace inverse transformation to (34)
yields
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The load is running on the bridge: Expanding (12b) yields
(2)
C5a;1 ¼ a1 sinh o1tð Þ þ a2 sin o1tð Þ þ a3 cosh o1tð Þ þ a4 cos o1tð Þ, (36)

where a1–a4 are given in the appendix. With the same procedure, Laplace transformation of (30) gets

Qab sð Þ mbs2 þ cbsþ kb

� �
¼ c11

a3sþ a1o1

s2 � o2
1

þ
a4sþ a2o1

s2 þ o2
1

� �
, (37a)

Qar sð Þ mrs
2 þ crsþ kr

� �
¼ c12

a3sþ a1o1

s2 � o2
1

þ
a4sþ a2o1

s2 þ o2
1

� �
. (37b)

The sum of rational fraction of Qab(s) and Qar(s) are

Qab sð Þ ¼ c11

mbpab1pab4 þmbpab5pab0

� �
sþ pab2pab4 þ pab6pab0
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!
, ð38aÞ

Qar sð Þ ¼ c12
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� �
!
, ð38bÞ

where pab0–pab7 and par0–par7 are given in the appendix. Applying Laplace inverse transformation to (38)
yields
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(3)
 The load is running out of the bridge: Expanding (12c) yields

C5o;1 ¼ o1 sinh o1tð Þ þ o2 sin o1tð Þ þ o3 cosh o1tð Þ þ o4 cos o1tð Þ þ o0, (40)

where o0–o4 are given in the appendix. Laplace transformation of (30) is

Qob sð Þ mbs2 þ cbsþ kb

� �
¼ c11

o3sþ o1o1

s2 � o2
1

þ
o4sþ o2o1

s2 þ o2
1

þ
o0

s

� �
, (41a)

Qor sð Þ mrs
2 þ crsþ kr

� �
¼ c12

o3sþ o1o1

s2 � o2
1

þ
o4sþ o2o1

s2 þ o2
1

þ
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� �
. (41b)

The sum of rational fraction of Qob sð Þ and Qor sð Þ are

Qob sð Þ ¼ c11
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where pob0–pob7 and por0–por7 are given in the appendix. Applying Laplace inverse transformation to (42)
yields
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After the complex solving procedure given above, the closed-form solutions of the normal coordinate have
been deduced. The dynamic response of the system includes transient and static two parts. The transient part
will disappear with the time going on. Only static part is left. So in the following analysis, we just discuss the
static part.

Substituting (35), (39) and (43) into (25), the generalized coordinate can be expressed as

qb

qr

" #
¼

Qb þQr

c11Qb þ c12Qr

" #
. (44)

Therefore, the midpoint deflection responses of the rail and bridge can, respectively, be approximated as

zb

Lb

2
; t

� �
ffi qb, (45a)

zr

Lb

2
; t

� �
ffi �1:2119 qr. (45b)

It is easy to know that the speed of the moving load v40. Observing (35), (39) and (43), if any one of pb0,
pr0, pb4 and pr4 equals to zero, qb,qr-N when v equals to certain value. Previous section assumes the damping
of the rail and bridge to be small. From their expression we know that pb0, pr0, pb4 and pr4 are always positive,
which means qb,qr-N will not occur. It is noted that exponential term evl1t is included in the closed-form
solutions and max(vt) ¼ Lb, which indicates that with the time going on, the vibration amplitude of the
guideway will not increase infinitely.

Comprehensively analyzing the closed-form solutions indicates that when the evenly distributed load passes
through the bridge, displacement of the guideway will arise. The displacement is composed of exponential and
harmonic terms. Because the time length the load passing through the bridge is finite, the displacement of the
guideway will not infinitely increase. All these indicate that vehicle–guideway interaction may not appear as is
shown in Refs. [10,15] when the evenly distributed load passes through the bridge. In another way, excitation
frequency o1 of the moving load is determined by running speed and vibration modal. The bridge does not
affect it. It increases with the increase of the speed and decrease with the increase of the rail length.

3.3. Displacement of high bending mode

The above analysis has obtained the first mode approximate solution. When n ¼ 2, making the approximate
solution as the known excitation, using w2 to decouple the coupling differential equations, following the same
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procedure, the second mode approximate solution can be solved. Similarly, any mode approximate solution is
able to be solved theoretically. But high-order modes are always excited by low-order modes, this makes the
analytical solution to be complicated and it is a hard work to analyze the results. So in this paper, only the first
mode approximate solution is studied, high-order modes are investigated by numerical method.

4. Impact factor and speed parameter

The impact factor [7,8,15], defined as the ratio of the maximum dynamic to the maximum static response of
the bridge under the same load minus one, are used to evaluate the dynamic response of the bridge due to the
moving vehicular loads. One typical definition for the impact factor is

I ¼
Rd xð Þ � Rs xð Þ

Rs xð Þ
, (46)

where Rd(x) and Rs(x), respectively, denote the maximum dynamic and static responses of the bridge
calculated at the cross-section x of the bridge of the interest. The speed parameter S is also a useful parameter
in analyzing the vehicle-induced vibrations, which is defined as the ration of the excitation frequency of the
moving vehicle o1 to the fundamental frequency O1,1 of the guideway, i.e.

S ¼ pv=ðLbO1;1Þ. (47)

It is known that when the midpoint of the static evenly distributed load overlaps with the midpoint of the
guideway, the static displacement of the guideway is maximal. Recalling the above analysis, the normal
coordinates of the guideway to reflect the maximum static deflection are known as
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� �
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Then from Eqs. (44) and (45) we have

zbs

Lb

2

� �
ffi Qbmid þQrmid, (49a)

zrs

Lb

2

� �
ffi �1:2119 c11Qbmid þ c12Qrmid

� �
. (49b)

According to different acting place of the moving load, the midpoint displacement of the rail and bridge can
be expressed as the following three conditions:

ð1Þ zbd

Lb

2
; t

� �
ffi Qub þQur; zrd

Lb

2
; t

� �
ffi �1:2119 c11Qub þ c12Qur

� �
, (50a,b)

ð2Þ zbd

Lb

2
; t

� �
ffi Qab þQar; zrd

Lb

2
; t

� �
ffi �1:2119 c11Qab þ c12Qar

� �
, (51a,b)

ð3Þ zbd

Lb

2
; t

� �
ffi Qob þQor; zrd

Lb

2
; t

� �
ffi �1:2119 c11Qob þ c12Qor

� �
. (52a,b)
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The corresponding impact factors are known as

ð1Þ Ib ¼
Qub þQur

Qbmid þQrmid

� 1; Ir ¼
c11Qub þ c12Qur

c11Qbmid þ c12Qrmid

� 1, (53a,b)

ð2Þ Ib ¼
Qab þQar

Qbmid þQrmid

� 1; Ir ¼
c11Qab þ c12Qar

c11Qbmid þ c12Qrmid

� 1, (54a,b)

ð3Þ Ib ¼
Qob þQor

Qbmid þQrmid

� 1; Ir ¼
c11Qob þ c12Qor

c11Qbmid þ c12Qrmid

� 1. (55a,b)

5. Numerical analysis

Previous sections have given the approximate solutions of the guideway. This section discusses the analyzing
results. Three problems need to be studied: (1) The relationship between natural frequency and structural
parameters; (2) midpoint displacement of the guideway induced by the moving vehicle; (3) impact factor of the
midpoint displacement. Numerical calculation shows that the second natural frequency of the nth mode is
larger than the first one (20 times), which means that the influence of the first one to the system is greater than
that of the second one. Thus only the first one needs to be discussed. As is given in Fig. 2, the properties of the
guideway investigated here are listed in Table 1 and we set ksle ¼ 6.958� 106N/m2. As can be seen from
Table 2, the first three natural frequency calculated from the analytical solutions of (19) agree quit well with
those by solving the free vibration problem of (14) using the first 10 sets of assumed displacement functions. In
Table 2, O1,1 (i ¼ 1,2,3) represents the first natural frequency of the ith mode.

Fig. 2(a) and (b) shows the first three modes of the rail and bridge. The first, second and third modes
correspond to O1,1, O2,1 and O3,1. It is noted that Fig. 2(a) gives the zero mode of the rail corresponding to
l0 ¼ 0. It means that the rail lying on the elastic foundation with two ends free can move like rigid body [18].

An observation of (13) indicates that it is a set of coupled differential equations for all the symmetric modes;
the closed-form solutions for the displacement response of the guideway are hard to derive. Therefore, a
numerical evaluation based on Wilson-y numerical integration method will be employed to solve the
dynamic response of the generalized coordinates (qr,n,qb,n). To improve the accuracy of the dynamic response
of the guideway subjected to moving load, the first 10 sets of assumed displacement modes are considered for
the deflection curves of the guideway, namely letting n ¼ 10. The solution obtained in this way will be used as
the basis of comparison in the numerical studies.
Fig. 2. Natural modes of the guideway: (a) rail mode; (b) bridge mode.

Table 1

Properties of the rail and bridge

Lb (m) EI (Nm2) r (kg/m) C (N s/m2)

Rail 24 2.7993� 1010 103 0.001

Bridge 24 9� 109 2697 0.008
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Table 2

Natural frequencies of the guideway

Frequency O1,1 (rad/s) O2,1 (rad/s) O3,1 (rad/s)

Eq. (19) 59.6387 139.115 286.2565

Multiple sets of vibration modes 59.6387 139.1149 286.2517
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5.1. Effect of the structure parameter to natural frequency

Vehicle–guideway interaction may take place when the natural frequency of the controlled maglev system is
close to the natural frequency of the guideway [19]. By investigating the influence of the structure parameter to
the natural frequency of the guideway, we are able to grasp the mechanism of the vehicle–guideway interaction
and the method to suppress the coupling resonance. When the free ends beam is supported by the elastic
foundation, natural frequencies are influenced by the stiffness of the foundation [18]. Fig. 3 proves this result
again. With different stiffness of the elastic foundation, the first natural frequencies of the guideway increases
with the stiffness of the sleeper going large.

Beam stiffness influences the natural frequencies either, as is shown in Fig. 4. In Fig. 4(a), when EbIb is
small, the first three natural frequencies are close to each other. With the increase of EbIb, the increasing speed
of O1,1 is the smallest while O3,1 increases the fastest which implies that the higher the mode is, the faster the
natural frequency increases. The stiffness of rail ErIr almost does not affect the natural frequency.

How does mass per unit length of the guideway affect the natural frequencies has not yet been clearly illustrated.
In general, mass per unit length has straight connection with the bending stiffness of the beam. The larger mass per
unit length is, the stiffer the beam will becomes. And engineering cost will go higher with the increase of mass per
unit length. So this relation is much valuable for engineering procedure. Fig. 5 presents the numerical relationship
between natural frequencies and mass per unit length. As observed in Fig. 5(a), natural frequencies decrease with
the increase of mass per unit length of the bridge, and the higher the mode is, the faster the frequencies will
decrease. The influence of mass per unit length of the rail to the natural frequencies can be omitted.

5.2. Midpoint displacement and impact response of the maglev guideway

To illustrate the vibration phenomenon of the guideway under action of the evenly distributed load, setting
v ¼ 27.78m/s(100 km/h), fm ¼ 22400N, Lv ¼ 12m. Wilson-y numerical integral method is employed with
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y ¼ 1.4, the first 10 sets of assumed displacement modes are considered, and numerical result is compared with
the analytical solutions (35), (39) and (42). Introducing the non-dimensional time factor vt/Lb, Figs. 6 and 7
show their comparison results. To the rail displacement, one mode analytical solution is in good agreement
with the multimode numerical calculation. While the larger the displacement value is, the bigger the difference
between analytical and numerical result will become. But the absolute value of the difference is small. When
we study the deflection of the guideway, only considering the first mode will not differ much from considering
multimodes. In addition, when vt/Lb41.5, evenly distributed load has run out of the bridge, the guideway will
vibrate at low frequency. Because structure damping of the guideway is not zero, the free vibration will vanish
anyway. Since sleeper can isolate the vibration, the vibration amplitude of the rail is much smaller than that of
the bridge.

Displacement impact response of the Guideway subjecting the moving load can be reflected by only
analyzing the first mode when the guideway is simply supported [15]. Eq. (51) gives the expression
of the guideway displacement impact factor for the first mode. To illustrate the effect of the acting position vt
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of the moving load, different values have been assumed for vt, i.e., vt/Lb ¼ 0.1,0.3,0.5,0.7,0.9. Figs. 8 and 9
show the impact factor of the dynamic response of the guideway to the static displacement of the midpoint.
The maximal speed is set to be 1500 km/h, which has never been met by track vehicles and is big enough. With
different acting position, impact factor differs much. From Fig. 8, we know that dynamic displacement of the
guideway under the distributed moving load is always smaller than the maximum static displacement of the
guideway midpoint. And in the midpoint of the span, the dynamic displacement is the biggest. Several extreme
values of the displacement are obtained as can be seen from the curves. And with different acting place, the
speeds to induce the extreme values are different either. In Fig. 8, when vt/Lb ¼ 0.1,0.3,0.5,0.7, once the impact
factor reaches its maximum value, it will decrease with the increase of the speed. Namely at some place of the
bridge, the max dynamic displacement of the guideway will increase when the speed of the load decreases. This
is in agreement with some experimental phenomena. Numerical simulation of (13) has testified this trend.
Impact curves in Fig. 9 are meeker than those in Fig. 8, no apparent peaks exist in the plot when So0.3. This
implies that moving load will not impact the rail strongly because of the elastic foundation. Thus, only the
impact response of the bridge needs to be carefully considered.
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6. Future research and conclusions

Vehicle–guideway interaction of the maglev system is an important and complicated problem. It is
influenced by the levitation system, guideway structure, vehicle structure, running speed, etc. So the
investigation of it should be launched out in many aspects. This article only concerns the dynamic response of
the guideway, the effects of the vehicle structure and controlling system are neglected. In the future work,
elasticity of the concrete supports, variation of the sleepers’ stiffness and the style of the guideway, the relation
between maglev control system and the vibration of the guideway and the second suspension system, etc. are
necessary to study. A great amount of work will be carried out.

This paper studies the dynamic response of the maglev guideway subjecting the evenly distributed moving
load by using the mode superposition method. The model of the guideway composed of the rail–elastic
foundation–simply supported beam is built for the first time. It is pointed out that stiffness of the sleeper
bridge and mass per unit length of the bridge greatly influence the value of natural frequency. If the natural
frequency of the maglev system and the guideway is close enough, vehicle–guideway interaction is easy to
appear. So properly select the structure parameter of the guideway is helpful to suppress the resonant
phenomenon. Closed-form solutions of the guideway imply that vehicle–guideway interaction is not
necessarily occurring with the maglev vehicle passing through the bridge with constant speed. Analytical result
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of the impact factor shows that when running speed of the load closes to certain values, the displacement of
the rail and bridge will reach their local extreme value. These speed need to be avoided. Especially,
at some position of the guideway, the dynamic displacement of the rail and bridge will decrease with the
increase of the running speed and the dynamic displacements are always smaller than the maximal static
midpoint displacement of the beam. Numerical simulation to the model with multimodes has testified these
conclusions.

Acknowledgments

The authors gratefully acknowledge the financial support for this work provided by National Nature and
Science Foundation of China (NNSFC, No. 60404003) and Fok Ying Dong Education Foundation (FYDEF,
No. 94028). Great thanks are given to J.D. Yau for his enthusiastic instruction.

Appendix

pub0�pub7 in Eq. (34a) are shown below:

pub0 ¼ mbo2
1 þ kb

� �2
� c2bo

2
1; pub1 ¼ cbo1 þmbV1o2

1 þ V 1kb,

pub2 ¼ c2bo1 þ cbV1kb �m2
bo

3
1 �mbo1kb; pub3 ¼ �mbo3

1 � kbo1 � V 1cbo2
1,

pub4 ¼ c2bo
2
1 þm2

bo
4
1 � 2kbmbo2

1 þ k2
b; pub5 ¼ mbV1o2

1 � V 1kb � cbo1,

pub6 ¼ mbo1kb �m2
bo

3
1 � c2bo1 � cbV1kb; pub7 ¼ mbo3

1 � kbo1 þ V1cbo2
1.

pur0–pur7 in Eq. (34b) are shown below:

pur0 ¼ mro2
1 þ kr

� �2
� c2ro

2
1; pur1 ¼ cro1 þmrV1o2

1 þ V 1kr,

pur2 ¼ c2ro1 þ crV 1kr �m2
ro

3
1 �mro1kr; pur3 ¼ �mro3

1 � kro1 � V1cro2
1,

pur4 ¼ c2ro
2
1 þm2

ro
4
1 � 2krmro2

1 þ k2
r ; pur5 ¼ mrV1o2

1 � V 1kr � cro1,

pur6 ¼ mro1kr �m2
ro

3
1 � c2ro1 � crV1kr; pur7 ¼ mro3

1 � kro1 þ V 1cro2
1.

a1–a4 in Eq. (36) are given as follows:

a1 ¼
f m

l1
1� cosh l1Lvð Þ � V1 sinh l1Lvð Þð Þ; a2 ¼

f m

l1
1� cos l1Lvð Þ � V 1 sin l1Lvð Þð Þ,

a3 ¼
f m

l1
�V1 þ sinh l1Lvð Þ þ V1 cosh l1Lvð Þð Þ; a4 ¼

f m

l1
V 1 þ sin l1Lvð Þ � V 1 cos l1Lvð Þð Þ.

pab0–pab7 in Eq. (38a) are shown as

pab0 ¼ mbo2
1 þ kb

� �2
� c2bo

2
1; pab1 ¼ a1cbo1 �mba3o2

1 � a3kb,

pab2 ¼ c2bo1a1 � cba3kb �m2
bo

3
1a1 �mbo1kba1; pab3 ¼ �a3cbo2

1 þ a1mbo3
1 þ o1a1kb,

pab4 ¼ c2bo
2
1 þm2

bo
4
1 � 2kbmbo2

1 þ k2
b; pab5 ¼ mba4o2

1 � a4kb � a2cbo1,

pab6 ¼ m2
bo

3
1a2 �mbo1kba2 þ c2bo1a2 � cbkba4; pab7 ¼ �mbo3

1a2 þ o1kba2 þ a4cbo2
1.

par0–par7 in Eq. (38b) are shown as

par0 ¼ mro2
1 þ kr

� �2
� c2ro

2
1; par1 ¼ a1cro1 �mra3o2

1 � a3kr,

par2 ¼ c2ro1a1 � cra3kr �m2
ro

3
1a1 �mro1kra1; par3 ¼ �a3cro2

1 þ a1mro3
1 þ o1a1kr,

par4 ¼ c2ro
2
1 þm2

ro
4
1 � 2krmro2

1 þ k2
r ; par5 ¼ mra4o2

1 � a4kr � a2cro1,

par6 ¼ m2
ro

3
1a2 �mro1kra2 þ c2ro1a2 � crkra4; par7 ¼ �mro3

1a2 þ o1kra2 þ a4cro2
1.
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O0–O4 in Eq. (40) are shown below:

o0 ¼
f m

l1
sinh l1Lbð Þ þ sin l1Lbð Þ � V 1 cosh l1Lbð Þ þ V 1 cos l1Lbð Þð Þ ¼ 0,

o1 ¼
f m

l1
� cosh Lvl1ð Þ � V1 sinh Lvl1ð Þð Þ,

o2 ¼
f m

l1
� cos Lvl1ð Þ � V 1 sin Lvl1ð Þð Þ,

o3 ¼
f m

l1
sinh Lvl1ð Þ þ V 1 cosh Lvl1ð Þð Þ; o4 ¼

f m

l1
sin Lvl1ð Þ � V 1 cos Lvl1ð Þð Þ.

pob0–pob7 in Eq. (42a) are shown as

pob0 ¼ mbo2
1 þ kb

� �2
� c2bo

2
1; pob1 ¼ o1cbo1 �mbo3o2

1 � o3kb,

pob2 ¼ c2bo1o1 � cbo3kb �m2
bo

3
1o1 �mbo1kbo1; pob3 ¼ �o3cbo2

1 þ o1mbo3
1 þ o1o1kb,

pob4 ¼ c2bo
2
1 þm2

bo
4
1 � 2kbmbo2

1 þ k2
b; pob5 ¼ mbo4o2

1 � o4kb � o2cbo1,

pob6 ¼ m2
bo

3
1o2 �mbo1kbo2 þ c2bo1o2 � cbkbo4; pob7 ¼ �mbo3

1o2 þ o1kbo2 þ o4cbo2
1.

por0–por7 in Eq. (42b) are shown as

por0 ¼ mro2
1 þ kr

� �2
� c2ro

2
1; por1 ¼ o1cro1 �mro3o2

1 � o3kr,

por2 ¼ c2ro1o1 � cro3kr �m2
ro

3
1o1 �mro1kro1; por3 ¼ �o3cro2

1 þ o1mro3
1 þ o1o1kr,

por4 ¼ c2ro
2
1 þm2

ro
4
1 � 2krmro2

1 þ k2
r ; por5 ¼ mro4o2

1 � o4kr � o2cro1,

por6 ¼ m2
ro

3
1o2 �mro1kro2 þ c2ro1o2 � crkro4; por7 ¼ �mro3

1o2 þ o1kro2 þ o4cro2
1.
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