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ABSTRACT: Hybrid-electromagnetic suspension (EMS) system is type that vehicle levitates from guide-way. 
An advantage of this system is no energy consumption at nominal operating point which is maintains levitation 
using attraction force by permanent magnetic only. The EMS system is inherently unstable. It means active 
control needs to be incorporated for stable levitation. And it needs control method which is satisfied stability 
and robustness when disturbance is existed. This paper presents robust control using linear quadratic (LQ) 
method in hybrid-EMS system. We simulate dynamic characteristics using pole replacement method and LQ 
method. The proposed method is better dynamic response by computer simulation. 
 

1 INTRODUCTION 

Railway among land transport has contributed a lot in 
human life and industrial development for the latest 
in a century. However share of railway was much 
relatively lower in passenger and freight transport 
because of rapid spread of car. But railway is 
effective and efficient system in terms of 
environmental.  

Magnetically Levitated Vehicle (MAGLEV) is 
getting spotlight newly in railway transport. 
MAGLEV is driving system without contact with 
rails by electromagnetic force. Magnetic levitation 
system is divided by electrodynamic suspension 
(EDS) and electromagnetic suspension (EMS).  

 A lot of researchers have been interested in 
hybrid-EMS in term of energy saving. EMS system 
has inherently unstable levitation characteristics with 
nonlinearity and parameter variation. Levitation 
controllers must maintain stability with gap variation 
and disturbance and have excellent dynamic response. 

 State feedback controller which is traditional 
method using PID or pole placement is difficult to 
precise and robust control with gap variation and 
disturbance. So a lot of studies proposed for robust 
control.  

This paper presents robust control using linear 
quadratic (LQ) method in hybrid-EMS system. The 
proposed method is better dynamic response by 
computer simulation. 

2 MATHEMATICAL MODEL OF HYBRID-EMS 
SYSTEM 

2.1 Magnetic Equivalent Circuit of Hybrid-EMS 
System 

Figure 1 shows magnetic equivalent circuit of hybrid-
EMS system. It assumes no magnetic saturation and 
leakage flux.  

 

 
Figure 1. Magnetic equivalent circuit of hybrid electromagnetic 
suspension system 

 
Total reluctance is given by Equation 1. 
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where, mR  is total reluctance, pcg RRR ,,  are 

reluctance of air gap, core and permanent magnet. 
Each reluctances are following. 
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 Magnetomotive force is given by Equation 3 and 4. 
 

( )miF Ni t  (3) 

( ) ( ) p r p
mm m p r

p p

l B l
F t R B A

A 
     (4) 

 
where, mmmi FF ,  is magnetomotive force of 

electromagnet and permanent magnet, N is turn 
number of coil, )( ti  is current of coil, )( tm  is 
flux of permanent magnet. 

 
Using Equation 1~4, flux and flux density is given. 
 

0

( )

( )
2 ( )

r p

pmm mi

pcc g p

c p

B l
Ni t

F F
t

ll z tR R R
A A A



  





  

   
 (5) 

0

( )
( )

( )
2 ( )

r p

p

pc

c p

B l
Ni t

t
B t

llA z t



  




 
 

 (6) 

 
If ccl / is neglected, flux density is rewritten. 
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Inductance at air-gap is given by equation (8). 
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Attraction force of air-gap is following equation. 
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2.2 Voltage and Dynamic Equation of Hybrid-EMS 
System 

Voltage equation of hybrid-EMS system is given by 
equation (10). 
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We could attain the equation (11) by reorganizing 

the equation (10) in terms of current perturbation. 
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Dynamic equation of hybrid-EMS system is given 

by equation (12). 
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Assuming no disturbance, dynamic equation of 

hybrid-EMS system at nominal operating point is 
given by equation (14). 
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By using linear approximation for excursions 

around the nominal operating point 0 0( , )i z , 
reasonably accurate linear model be obtained. The 
small perturbation linear equations of system are 
expressed equation (15), (16) and (17). 
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Perturbation of attraction force is expressed by 

current and air-gap partial differential equation.  
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Because gravity is equal to attraction force at 

nominal operating force, equation (18) is expressed 
equation (19). 
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2.3 State-space Equation of Hybrid-EMS System 

Using Voltage and dynamic equation, state-space 
equation is given by equation (21). 
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where, each parameter matrix of state-space 

equation are followings. 
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Figure 2 shows block diagram of state-space 
equation of hybrid EMS system. 
 

 
Figure 2. block diagram of state-space equation of hybrid EMS 
system. 

2.4 Characteristic of Hybrid-EMS System 

It assumes that initial conditions of state-space and 
output equations are zero. Equation (25) is obtained 
by Laplace transformation.  
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For getting poles and zeros, It uses root-locus. As 

a result, two poles are left half plane, and one pole is 
right half plane. Because of one pole of right half 
plane, system is unstable.  

 

 
Figure 3 Position of open-loop poles in hybrid-EMS system. 

3 ROBUST CONTROL OF LEVITATION 
SYSTEM 

3.1 Conventional Control Method(Pole placement) 

Consider a plant represented in state-space by 
equation (26) 
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Control signal is given by equation (27) 
 

u  Kx  (27) 
 
Feedback through the gains is represented in 

Figure 4 by feedback vector K . Combining equation 
26 and 27, equation 28 is obtained. 
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Figure 4.  State-space representation of a plant with state-
variable feeback. 

 
State-space equation of Hybrid-EMS system with 

current error integrator is given by equation (29) 
 

00

0 0

1
, 0 ,

1
0

1 0 0 , 0

( ) ( ) ( )

0 1 0

0

0 0

I e

T T

a d d

zh ih

x

u

y

M

L

e t F t K F t

c c
M M

R
L

   
   
   
   
   
   
   
     
      

      

 




 

   

 



x Ax B

Cx

Β

C D

u Kx

A



 (29) 

 
where, ex is error of current, IK is gain of current 
error integrator. 

Transfer function is given by equation (30) using 
equation (29) 
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We set settling time is 0.4[s] and percent 

overshoot is 1[%]. Using pole replacement, feedback 
gains are obtained. 
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Figure 4 shows position of close-loop poles in 

hybrid-EMS system using pole replacement. 
 

Figure 4 Position of open-loop poles in hybrid-EMS system 
using pole replacement 

3.2 Proposed Control Method (Linear quadratic) 

If a plant represented in state-space by equation (26) 
and control is given by equation (27), cost function is 
given by equation (31). 
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An object of LQ method is that find matrix 

K which makes minimum of cost function. As a 
result, control signal is satisfied Riccati equation.  
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Using LQ method, feedback gains are obtained. 
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Figure 5 shows position of close-loop poles in 

hybrid-EMS system using LQ method. 
 
 

Figure 5 Position of open-loop poles in hybrid-EMS system 
using LQ method 

4 SIMULATION 

Table 1 shows specification of hybrid-EMS system. 
Initial air-gap is 7.5[mm], nominal operating air-gap 
is 5[mm]. 
 
Table 1. Specification of hybrid-EMS system. 

Item Unit Value 
Total Height mm 47 
Total Width mm 60 
Teeth Height mm 33 

Core 

Teeth width mm 10 
Weight kg 3.5 

Turns of coil  660 
Permanent 

magnet 
 Nd-Fe-B 

(N42) 
Height of PM mm 14 
Area of PM mm2 700 

Hybrid 
electromagnet

Flux density T 1.27 
 

4.1 Without Disturbance 

4.1.1 Pole replacement 

Figure 6 ~ 10 shows current, air-gap, acceleration and 
velocity characteristic. 
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Figure 6. Current characteristic with pole replacement. 

 

 
Figure 7. .Current characteristic with pole replacement at steady 
state. 

 

 
Figure 8. Air-gap characteristic with pole replacement. 
 

 
Figure 9. Acceleration characteristic with pole replacement. 

 

 
Figure 10. Velocity characteristic with pole replacement. 

 

4.1.2 Linear Quadratic Method 

Figure 11 ~ 15 shows current, air-gap, acceleration 
and velocity characteristic. 
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Figure 11. Current characteristic with LQ method. 
 

 
Figure 12. .Current characteristic with pole LQ method at steady 
state. 

 

 
Figure 13. Air-gap characteristic with LQ method. 
 

 
Figure 14. Acceleration characteristic with LQ method. 
 

 
Figure 15. Velocity characteristic with LQ method. 

4.2 With Disturbance 

Figure 16 shows disturbance profile. 
 

 
Figure 16. Disturbance profile. 
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4.2.1 Pole replacement 

Figure 17 ~ 20 shows current, air-gap, acceleration 
and velocity characteristic. 
 

 
Figure 17. Current characteristic with pole replacement. 
 

 
Figure 18. Air-gap characteristic with pole replacement. 
 

 

 
Figure 19. Acceleration characteristic with pole replacement. 
 

 
Figure 20. Velocity characteristic with pole replacement. 

 

4.2.2 Linear Quadratic Method 

Figure 21 ~ 24 shows current, air-gap, acceleration 
and velocity characteristic. 
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Figure 21. Current characteristic with LQ method. 
 

 
Figure 22. Air-gap characteristic with LQ method. 
 

 
Figure 23. Acceleration characteristic with LQ method. 
 

 

 
Figure 24. Velocity characteristic with LQ method. 

5 CONCLUSIONS 

We propose controller using LQ method to control 
levitation system. Optimal control theory is focused 
dynamic system is operating at a minimum cost.  
 In simulation, dynamic characteristic of LQ 
controller is better than traditional controller without 
disturbance. That is, settling time is decreased and 
current ripple of steady state is reduced. 
Also control of LQ controller is more robust than 
traditional control. When applied to disturbance, LQ 
controller’s current and gap variation is smaller than 
traditional controller. 
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